Classes of non-Hermitian operators with real eigenvalues

نویسندگان

  • Natalia Bebiano
  • Joao da Providencia
  • Joao P. da Providencia
چکیده

Classes of non-Hermitian operators that have only real eigenvalues are presented. Such operators appear in quantum mechanics and are expressed in terms of the generators of the Weyl-Heisenberg algebra. For each non-Hermitian operator A, a Hermitian involutive operator Ĵ such that A is Ĵ-Hermitian, that is, ĴA = AĴ , is found. Moreover, we construct a positive definite Hermitian Q such that A is Q-Hermitian, allowing for the standard probabilistic interpretation of quantum mechanics. Finally, it is shown that the considered matrices are similar to Hermitian matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela Classes of Non-hermitian Operators with Real Eigenvalues

Classes of non-Hermitian operators that have only real eigenvalues are presented. Such operators appear in quantum mechanics and are expressed in terms of the generators of the Weyl-Heisenberg algebra. For each non-Hermitian operator A, a Hermitian involutive operator Ĵ such that A is Ĵ-Hermitian, that is, ĴA = AĴ , is found. Moreover, we construct a positive definite Hermitian Q such that A is...

متن کامل

Pseudo-Hermitian ensemble of random Gaussian matrices.

It is shown how pseudo-Hermiticity, a necessary condition satisfied by operators of PT symmetric systems can be introduced in the three Gaussian classes of random matrix theory. The model describes transitions from real eigenvalues to a situation in which, apart from a residual number, the eigenvalues are complex conjugate.

متن کامل

Analyzing the spectrum of general, non-hermitian Dirac operators

We discuss the computational problems when analyzing general, non-hermitian matrices and in particular the un-modified Wilson lattice Dirac operator. We report on our experiences with the Implicitly Restarted Arnoldi Method. The eigenstates of the Wilson-Dirac operator which have real eigenvalues and correspond to zero modes in the continuum are analyzed by correlating the size of the eigenvalu...

متن کامل

Non-Hermitian Hamiltonians with real and complex eigenvalues: An sl(2,C) approach

Potential algebras are extended from Hermitian to non-Hermitian Hamiltonians and shown to provide an elegant method for studying the transition from real to complex eigenvalues for a class of non-Hermitian Hamiltonians associated with the complex Lie algebra A1.

متن کامل

Spaces of Hermitian Operators with Simple Spectra and Their Finite-order Cohomology

V. I. Arnold studied the topology of spaces of Hermitian operators with non-simple spectra in C in relation to the theory of adiabatic connections and the quantum Hall effect. (Important physical motivations of this problem were also suggested by S. P. Novikov.) The natural stratification of these spaces into the sets of operators with fixed numbers of eigenvalues defines a spectral sequence pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009